Question 1

Consider the following UML class diagram and the contents of the file main.cpp to answer the questions that follow them:

[image:]

//main.cpp

#include <QApplication>
#include <QInputDialog>
#include <QMessageBox>
#include "module.h"

QStringList getModuleInfo(){
QString userInput = QInputDialog::getText(0, "Module Details",
"Enter module code and module name (code and name separated by ,)");
QStringList modInfo = userInput.split(",");
return modInfo;
}
int main(int argc, char *argv[])
{
QApplication a(argc, argv);

// Include your code here

return 0;
}

The class Module represents a module, which stores the module code and module name in its data members. toString() returns a string representation of the data members of an instance of
Module. getNQFLevel() returns the NQF level of a module given its module code. The NQF level of a module is represented by the 5th character of the module code.

Assume that Module is implemented correctly and added to a Qt project, which also has the above main.cpp file.

1.1 Explain in detail what the function getModuleInfo() does.

Answer: The function prompts a user to input a module code and name separated by “,” using the static public member function getText() of the built-in QInputDialog class with label “Module Details” and returns the user input in a QStringList named modInfo

1.2 Write lines of code in main() so that a module object is created using the module information (code and name) provided by the user and then the state (returned by toString()) of the module object and its NQF level are displayed to the user in one QMessageBox. Note that you need to invoke getModuleInfo() in your answer. No error checking needs to be performed. In other words, the program can assume that all input is correct.

Answer : ??

1.3 getNQFLevel() is underlined in the UML class diagram. What does this mean ?

Answer : It is UML notation to indicate that the function is a static member of the class “Module”.

Question 2

Consider the following Transaction class hierarchy to answer the questions that follow:

[image:]
2.1 List the abstract and concrete classes in the class hierarchy.

Abstract Class: Transaction An abstract base class is used to encapsulate common features of concrete derived classes. An abstract class cannot be instantiated
Concrete Classes: Deposit and Withdrawal

2.2 State the differences between a pure virtual function and a virtual function in terms of their:

• representations in a UML class diagram

Answer:

A pure virtual functions are represented as italics, example is function “ [image:]” in the abstract class Transaction in the UML diagram.

A virtual function is a member function that is declared within a base class and redefined by a derived class e.g. [image:]in Transaction as well as in deposit and withdrawal in the UML diagram. It is declared with virtual keyword and the function call is resolved at run-time (dynamic binding) whereas the non-virtual member functions are resolved at compile time (static binding).

• definitions and implementations in C++ using examples from the given class hierarchy.

Answer:

· Pure Virtual function
//definition
 class Transaction {
 public:
 virtual double computeCost() const = 0;
//a pure virtual function with no function body

//implementation

 double Withdrawal::computeCost() const{
return m_Amount * m_Percentage;
}

· Virtual function
//definition
Class Transaction {
 public:
 virtual QString toString() const;

//implementation
QString Transaction::toString() const{
 return QString("Type: %1, Date and Time:%2%3").arg(m_Type).arg(m_DateTime.toString("dd.MM.yyyy")).arg(m_DateTime.toString("hh:mm:ss:zzz"));

2.3 An abstract class cannot be instantiated but they can have constructors. What is the purpose of a constructor in an abstract class?

Answer: An abstract class can have member variables and potentially non-virtual member functions, so that every derived class from the former implements specific actions.
The responsibility for the initialization of these member variables may belong to the abstract class (at least always for private members, because derived class wouldn't be able to initialize them, yet could use inherited member functions that may use/rely on these members).

2.4 Write code to implement the constructor of Withdrawal. Note that m_Type in Transaction
should be initialized to "Withdrawal" and m_DateTime should be set to the current date and time, which can be obtained from the function QDateTime::currentDateTime().

Answer:

Withdrawal::Withdrawal(double amount): Transaction("Withdrawal", QDateTime::currentDateTime()), m_Amount(amount){
}

2.5
(a) Write code to define the function toString() in Transaction.

Answer :

QString Transaction::toString() const{ return QString("Type: %1, Date and Time:%2%3").arg(m_Type).arg(m_DateTime.toString("dd.MM.yyyy")).arg(m_DateTime.toString("hh:mm:ss:zzz"));

(b) Write code to implement the function toString() in Deposit. Utilise partial overriding and assume that toString() in Transaction is implemented correctly.

Answer:

QString Deposit::toString() const { return QString("%1, Amount Deposited: %2, Deposit Fee: %3").arg(Transaction::toString()).arg(m_Amount).arg(m_Fee);

2.6 State whether each of the following statements is correct or incorrect.

(a) Withdrawal * t1 = new Withdrawal(120.25); Correct
(b) Deposit *t2 = new Transaction("Deposit",QDateTime::currentDateTime());Incorrect
(c) Transaction *t3 = new Deposit(2000); Incorrect

2.7 State two conditions that need to be satisfied by a class hierarchy to utilise polymorphism.

Answer:

1. A class must declare or inherit a virtual function, the virtual keyword allows a member of a derived class with the same name as one in the base class to be appropriately called from a pointer, and more precisely when the type of the pointer is a pointer to the base class that is pointing to an object of the derived class.
2. Must contain an abstract base class in the hierarchy, which are classes that contain at least one pure virtual function.

2.8 Consider the class definition of TransactionList to manage a list of transactions:

class TransactionList{
public:
~TransactionList();
void addTransaction(Transaction* t);
double totalTransactionCost() const;
QString frequentTransactionType() const;
QList<Transaction*> transactionsOnADate(QDate date) const;
QString toString() const;
private:
QMap<QDateTime, Transaction*> m_TransactionList;
};

Write code to implement the following functions:

(a) addTransaction() so that a given transaction gets added to m_TransactionList.

Answer :
void TransactionList::addTransaction(Transaction *t){
 m_TransactionList.insert(*t)
};

// I think this is wrong

(b) totalTransactionCost() so that it returns the total transaction cost of all transactions
in m_TransactionList. Assume that computeCost() in the Transaction class
hierarchy returns the cost of the respective transactions.

Answer:

double TransactionList::totalTransactionCost()const{
 double cost = 0.0;
 foreach(Transaction* t, m_TransactionList){
 cost += t->computeCost() //I think this is wrong for a QMap ?

(c) ~TransactionList() so that TransactionList realises a composition relationship
with Transaction.

Answer:
TransactionList::~TransactionList() {
 qDeleteAll(*m_transactionList);
 m_TransactionList.clear();
[bookmark: _GoBack]} //also QMap needed I think ?
Question 3

Consider the following definition and implementation of the PasswordKeypad class and answer the questions that follow:

//definition
class PasswordKeypad : public QDialog {
Q_OBJECT
private:
QString password;
QLabel * passwordLabel;
public:
PasswordKeypad();
public slots:
void key1pressed();
void key2pressed();
void key3pressed();
void key4pressed();
};

//implementation
PasswordKeypad::PasswordKeypad()
: password(""), passwordLabel(new QLabel("")) {
QPushButton * key1 = new QPushButton("1");
QPushButton * key2 = new QPushButton("2");
QPushButton * key3 = new QPushButton("3");
QPushButton * key4 = new QPushButton("4");
QPushButton * OKButton = new QPushButton("OK");
QVBoxLayout * vLayout = new QVBoxLayout();
QHBoxLayout * keysLayout = new QHBoxLayout();
vLayout->addWidget(passwordLabel);
keysLayout->addWidget(key1);
keysLayout->addWidget(key2);
keysLayout->addWidget(key3);
keysLayout->addWidget(key4);
vLayout->addLayout(keysLayout);
vLayout->addWidget(OKButton);
setLayout(vLayout);
connect(key1, SIGNAL(clicked()), this, SLOT(key1pressed()));
connect(key2, SIGNAL(clicked()), this, SLOT(key2pressed()));
connect(key3, SIGNAL(clicked()), this, SLOT(key3pressed()));
connect(key4, SIGNAL(clicked()), this, SLOT(key4pressed()));
connect(OKButton, SIGNAL(clicked()), this, SLOT(close()));
}
void PasswordKeypad::key1pressed() {
password += "1";
passwordLabel->setText(QString(password.length(),'*'));
}

The implementations of key2pressed(), key3pressed() and key4pressed() are identical
to key1pressed() except that the relevant digit ("2", "3" or "4") is used instead of "1".

3.1 Draw a sketch of the dialog box that is displayed when this class is being used, after the user has clicked on the buttons 1, 2, 3 and 4 (in that order).

3.2 Why are the string and the label (password and passwordLabel) declared as data members of PasswordKeypad, as opposed to the buttons and layouts which are declared as local variables in the constructor?

3.3 The class definition above contains the keywords public slots: This is not standard C++
syntax, but the compiler does not give an error. Why not?

3.4 Explain the purpose and working of the Qt framework's child-management facility.

3.5 With respect to child-management, identify which statements of the given code make which objects children of which parents.

3.6 The last statement of the constructor of the PasswordKeypad class connects the clicked()
signal of OKButton to the close() slot of this, but close() is not declared as a slot of
PasswordKeypad. Why is this not a problem?

3.7 The above class uses four slots which do identical work. The design can be simplified by extracting the key of the button that was pressed from its text and using that in a single slot.

Write a slot function called keyPressed() to replace the four slots. Also explain what changes need to be made to the PasswordKeypad class.

3.8 Consider the constructor of the MyMainWindow class below and answer the question that follows:

MyMainWindow::MyMainWindow() {
QMenu * menu = new QMenu("&Services", this);
QAction * action = new QAction("&Login", this);
QActionGroup * actionGroup = new QActionGroup();
actionGroup->addAction(action);
menu->addActions(actionGroup->actions());
this->menuBar()->addMenu(menu);
connect(action, SIGNAL(triggered()), this, SLOT(getPassword()));
}

Change the constructor of MyMainWindow so that the main window also has a toolbar at the bottom with a single button on it. When the user clicks on the button, the effect should be the same as clicking on the Login option on the Services menu.

Question 4

4.1

(a) State the names of the classes involved in the classic Composite design pattern, and explain the purpose of this pattern, that is, in what situations it should be applied.

(b) State the names of the classes involved in the classic Observer design pattern, and explain the purpose of this pattern.

4.2 The QObject class is said to represent a simplified application of the Composite and Observer design patterns. Explain.
image1.emf

image2.emf

image3.emf

image4.png
+ toString() : QString

